LogoLogo
  • 1. GASFLOW Code
    • 1.1. Overview
    • 1.2. Code Approach
    • 1.3. Code Features
    • 1.4. Graphical User Interface
    • 1.5. Code V&V
    • 1.6. Application Highlights
    • 1.7. Publications
    • 1.8. Current Activities
  • 2. Tutorials
    • 2.1. Overview
    • 2.2. Sod's Shock Tube Problem
    • 2.3. Mesh Generation from CAD Models
    • 2.4. 2D Lid-driven Cavity Flow
    • 2.5. Hydrogen Diffusion into Air in a 1D Duct
    • 2.6. Supersonic Flow over a Forward-facing Step
    • 2.7. Vented Explosion of Premixed Hydrogen-Air Mixtures
    • 2.8. Transient Laminar Jet Flow at Low Mach Number Regime
  • 3. Brief User Guide
    • 3.1. Overview
    • 3.2. General User Guidance
    • 3.3. Unit System and Files
    • 3.4. Mesh Generation
    • 3.5. Geometry Definition
    • 3.6. Numerical Control
    • 3.7. Gas Species and Properties
    • 3.8. Initial and Boundary Conditions
    • 3.9. Solid Heat Structures
    • 3.10. Physical Models
    • 3.11. Restart and Output
    • 3.12. GASFLOW Parallelization
  • 4. Pre- and Post-Processing Tools
    • 4.1. GASVIEW
    • 4.2. Pyscan
    • 4.3. Create3D
  • 5. Verification and Validation
    • 5.1.Overview
    • 5.2. Fluid Dynamics
      • [AS-FD 1] Steady-State and Laminar Flow Startup
      • [AS-FD 2] Transient Compressible Flow
      • [AS-FD 3] Diffusion of Hydrogen into Air
      • [AS-FD 4] Flow past a Rectangular Block
      • [AS-FD 5] 1D Flow with an Orifice
      • [ED-FD 1] Incompressible Laminar Flow in a Lid-driven Cavity
      • [ED-FD 2] Stationary Turbulent Channel Flow
      • [ED-FD 3] Turbulent Flow between Two Parallel Plates
      • [ED-FD 4] Flow over Backward-Facing Step
      • [ED-FD 5] Transient Supersonic Flow at Mach 3 over a Forward-facing Step
      • [ED-FD 6] Large Eddy Simulations of the Turbulent Jet Flow
      • [ED-FD-7] Hydrogen Turbulent Dispersion in Nuclear Containment Compartment
      • [ED-FD 8] Buoyant Jet from Unintended Hydrogen Release
      • [ED-FD 9] Radiolytic Gas Accumulation in a Pipe
      • [ED-FD 10] Supersonic Flow at Mach 2 over a Backward Facing Step
    • 5.3. Combustion
      • [ED-CM 1] BOM Spherical Combustion Chamber
      • [ED-CM 2] SNL Flame Acceleration Measurement Facility Experiment
      • [ED-CM 3] Hydrogen Deflagration in a Multi-compartment System
      • [ED-CM 4] Hydrogen Jet Fire in a Compartment with Venting Hole
      • [ED-CM 5] Hydrogen-Air Fast Deflagration in ENACCEF Facility
      • [ED-CM 6] Detonation of Premixed H2-Air Mixture in a Hemispherical Balloon
      • [ED-CM 7] H2 Deflagration at a Refueling Station
      • [ED-CM 8] Methane-Air Explosion in LLEM
      • [ED-CM 9] Hydrogen-Methane Combution in a 20 L Spherical Vessel
    • 5.4. Heat and Mass Transfer
      • [AS-HT 1] Steady-State Heat Transfer through a Wall
      • [AS-HT 2] Pressure-Volume Work Term 1: Equilibrium Case
      • [AS-HT 3] Thermodynamic Benchmarks
      • [AS-HT 4] Uniform Energy Addition to Stagnant Fluid
      • [ED-HT 1] Natural Convection in an Air-filled Square Cavity
      • [ED-HT 2] Validation of the condensation model with COPAIN facility
      • [ED-HT 3] Heat and mass transfer of a thin film model in a channel
      • [ED-HT 4] Validation of the Film Model in the Integral Test Facility for Passive Containment Cooling
      • [ED-HT 5] Stratification Erosion Benchmark
      • [ED-HT 6] Battelle Containment HYJET Test JX7
      • [ED-HT 7] Battelle GX Tests
      • [ED-HT 8] Tests in ThAI Facility
      • [ED-HT 9] HDR Tests
      • [ED-HT 10] Phebus Thermal Hydraulic Tests
      • [ED-HT 11] Test Tosqan ISP47
      • [ED-HT 12] Test MISTRA ISP47
      • [ED-HT 13] Panda SETH Test Program
    • 5.5. Multiphase Flow
      • [AS-MP 1] Particle Terminal Velocity
      • [AS-MP 2] Water droplet evaporation
      • [ED-MP 1] Spray Single Droplet Test
      • [ED-MP 2] Spray Droplets Test 113 at IRSN TOSQAN
      • [ED-MP 3] Spray Droplets Test 101 at IRSN TOSQAN
  • 6. APPLICATION HIGHLIGHTS
    • 6.1. H2 Fuel Cell Vehicle Accident in Tunnel
    • 6.2. Hydrogen Explosion in a Refueling Station
    • 6.3. Hydrogen Explosion at Fukushima Accident
    • 6.4. Methane Explosion in the Roadway of a Coal Mine
    • 6.5. Aerosols and Droplets
      • 6.5.1. Coronavirus Aerosol Transmission
      • 6.5.2. Water Droplets
  • 7. Ongoing Development and Enhancements
    • 7.1. Combustion Modeling
      • 7.1.1. Multi-step Global Methane Combustion Models
        • 7.1.1.1. One-step Reaction Mechanism
        • 7.1.1.2. Two-step Reaction Mechanism
        • 7.1.1.3. Three-step Reaction Mechanism
        • 7.1.1.4. Four-step Reaction Mechanism
        • 7.1.1.5. Five-step Reaction Mechanism
        • 7.1.1.6. FAQ
      • 7.1.2. Laminar Flame Speed Correlations for Methane-air Mixtures
        • 7.1.2.1. Stone's Correlation
        • 7.1.2.2. Elia's Correlation
        • 7.1.2.3. Takizawa's Correlation
        • 7.1.2.4. Liao's Correlation
      • 7.1.3. Turbulent Flame Speed Correlations for Methane-air Mixtures
      • 7.1.4. Correction of Effective Turbulent Burning Velocity for Lean Hydrogen-air Mixtures
      • 7.1.5. Induction Time Model
      • 7.1.6. Detailed Chemical Kinetic Modeling
      • 7.1.7. Jet Flame Modeling
    • 7.2. Discrete Particle Modeling
      • 7.2.1. Particle mass in user-defined volumes - volpardef
      • 7.2.2. Particle injection from ring shaped volumes
    • 7.3. Heat Transfer Modeling
      • 7.3.1. Time-dependent tables for heat flux and heat transfer coefficient in sinkdef
      • 7.3.2. Thermal Radiation Model for Water Vapor and Carbon Dioxide
  • 8. INPUT FILE EXAMPLES
    • 8.1. Overview
    • 8.1. Fluid Dynamics
  • 8.2. Combustion
  • 8.3. Heat Transfer
  • 8.4. Multiphase Flow
  • 8.5. Applications
  • 9. Frequently Asked Questions
    • 9.1. How to set up models for the flashing of pressurized water?
  • 9.2. How to run GASFLOW on Windows?
  • 9.3. How to export/import WSL distribution?
Powered by GitBook
On this page

Was this helpful?

  1. 1. GASFLOW Code

1.1. Overview

Next1.2. Code Approach

Last updated 6 months ago

Was this helpful?

GASFLOW is a high-performance three-dimensional Computational Fluid Dynamics (CFD) code that solves the transient, compressible Navier-Stokes equations. Its advanced semi-implicit solution algorithm allows it to handle a wide range of flow regimes, from incompressible to supersonic, without the need to switch numerical solvers. This powerful simulation-based engineering tool has been strategically tailored to meet the evolving demands of current and future environmental and energy systems. GASFLOW excels at modeling reactive gases and multi-phase flows, including aerosols, droplets, and dust, within complex geometries. Its ability to seamlessly transition from low-speed to high-speed flows enables it to provide reliable and robust solutions for a diverse array of applications.

With GASFLOW, scientific safety analyses of reactive gases and dusts are conducted, drawing upon theoretical, numerical, and experimental expertise. This enables GASFLOW to offer opportunities for cost and safety optimization in the development of present and future energy and environmental systems, such as hydrogen energy, natural gas, and peaceful utilization of nuclear power.

Key features of GASFLOW code include:

  1. High-performance finite volume all-speed CFD code for real-world applications.

  2. CFD-based engineering tool providing rapid simulations for large-scale problems.

  3. A best-estimation tool for accident investigations involving reactive gas and dust dispersion and explosions.

  4. A professional computational tool for developing specific solutions to enhance safety while reducing costs.

GASFLOW has been under continuous development since the 1980s, driven by the commitment and expertise of a collaborative team of dedicated scientists and engineers from the (KIT) , KIT's spin-off GFX-Global GmbH, and their international partners.

The team has extensive expertise in computational fluid dynamics (CFD) software for complex multi-phase flows and reactive flows. The GASFLOW development has been supported by a substantial investment of over 200 person-years, resulting in more than 300 and technical reports. Over 40 scientists, engineers, and Ph.D. students have been directly involved in the ongoing development and rigorous . This long-term, collaborative effort has allowed GASFLOW to combine fundamental research, deep scientific knowledge, and decades of practical experience in successful contract work. The robust validation and extensive real-world use of GASFLOW have made it a trusted and widely adopted CFD simulation platform in the energy industry.

If you require additional details or have any inquiries, please feel free to reach out to us via email at .

Karlsruhe Institute of Technology
publications
validation of the code
info@gasflow-mpi.com
Typical applications in ractive gas release, dispersion and combustion
Typical applications in aerosol transport
GASFLOW Development History